Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 212
Filtrar
1.
Biomater Sci ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38712883

RESUMO

Various strategies at the microscale/nanoscale have been developed to improve oral absorption of therapeutics. Among them, gastrointestinal (GI)-transporter/receptor-mediated nanosized drug delivery systems (NDDSs) have drawn attention due to their many benefits, such as improved water solubility, improved chemical/physical stability, improved oral absorption, and improved targetability of their payloads. Their therapeutic potential in disease animal models (e.g., solid tumors, virus-infected lungs, metastasis, diabetes, and so on) has been investigated, and could be expanded to disease targeting after systemic/lymphatic circulation, although the detailed paths and mechanisms of endocytosis, endosomal escape, intracellular trafficking, and exocytosis through the epithelial cell lining in the GI tract are still unclear. Thus, this review summarizes and discusses potential GI transporters/receptors, their absorption and distribution, in vivo studies, and potential sequential targeting (e.g., oral absorption and disease targeting in organs/tissues).

2.
Sci Rep ; 14(1): 9440, 2024 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658799

RESUMO

Although previous studies have examined the signaling pathway involved in melanogenesis through which ultraviolet (UV) or α-melanocyte-stimulating hormones (α-MSH) stimuli act as key inducers to produce melanin at the stratum basal layer of the epidermis, the signaling pathway regulating melanogenesis is still controversial. This study reports that α-MSH, not UVA and UVB, acted as a major stimulus of melanogenesis in B16F10 melanoma cells. Signaling pathway analysis using gene knockdown technology and chemical inhibitors, the mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK)/p90 ribosomal S6 kinase 2 (RSK2) played an important role in melanogenesis. Unexpectedly, LY294002, a PI3K inhibitor, increased melanogenesis without UV or α-MSH stimulation, suggesting that the PI3K/AKT signaling pathway may not be a major signaling pathway for melanogenesis. Chemical inhibition of the MEKs/ERKs/RSK2 signaling pathway using U0126 or BI-D1870 suppressed melanogenesis by stimulation of UVA or α-MSH stimulation, or both. In particular, the genetic depletion of RSK2 or constitutive active (CA)-RSK2 overexpression showed that RSK2 plays a key role in melanogenesis. Interestingly, forkhead box protein O4 (FOXO4) was phosphorylated by RSK2, resulting in the increase of FOXO4's transactivation activity. Notably, the FOXO4 mutant harboring serine-to-alanine replacement at the phosphorylation sites totally abrogated the transactivation activity and reduced melanin production, indicating that RSK2-mediated FOXO4 activity plays a key role in melanogenesis. Furthermore, kaempferol, a flavonoid inhibiting the RSK2 activity, suppressed melanogenesis. In addition, FOXO4-wt overexpression showed that FOXO4 enhance melanin synthesis. Overall, the RSK2-FOXO4 signaling pathway plays a key role in modulating melanogenesis.


Assuntos
Melaninas , Pteridinas , Proteínas Quinases S6 Ribossômicas 90-kDa , Transdução de Sinais , alfa-MSH , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Melaninas/biossíntese , Melaninas/metabolismo , Animais , alfa-MSH/metabolismo , alfa-MSH/farmacologia , Camundongos , Linhagem Celular Tumoral , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Forkhead/genética , Raios Ultravioleta , Morfolinas/farmacologia , Cromonas/farmacologia , Nitrilas/farmacologia , Butadienos/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Melanoma Experimental/metabolismo , Melanogênese
3.
Cell Death Dis ; 15(4): 274, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632244

RESUMO

Accumulating evidence demonstrates that the activity regulation of ELK3, a member of the E26 transformation-specific oncogene family, is critical to regulating cell proliferation, migration, and survival in human cancers. However, the molecular mechanisms of how ELK3 induces chemoresistance in prostate cancer (PCa) have not been elucidated. In this study, we found that SPOP and ELK3 are an interacting partner. The interaction between SPOP and ELK3 resulted in increased ELK3 ubiquitination and destruction, assisted by checkpoint kinase-mediated ELK3 phosphorylation. Notably, the modulation of SPOP-mediated ELK3 protein stability affected the c-Fos-induced cell proliferation and invasion of PCa cells. The clinical involvement of the SPOP-ELK3 axis in PCa development was confirmed by an immunohistochemical assay on 123 PCa tissues, with an inverse correlation between increased ELK3 and decreased SPOP being present in ~80% of the specimens. This observation was supported by immunohistochemistry analysis using a SPOP-mutant PCa specimen. Finally, docetaxel treatment induced cell death by activating checkpoint kinase- and SPOP-mediated ELK3 degradation, while SPOP-depleted or SPOP-mutated PCa cells showed cell death resistance. Notably, this observation was correlated with the protein levels of ELK3. Taken together, our study reveals the precise mechanism of SPOP-mediated degradation of ELK3 and provides evidence that SPOP mutations contribute to docetaxel resistance in PCa.


Assuntos
Neoplasias da Próstata , Proteínas Proto-Oncogênicas c-ets , Humanos , Masculino , Docetaxel/farmacologia , Docetaxel/uso terapêutico , Mutação , Proteínas Nucleares/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Repressoras/metabolismo , Ubiquitinação , Proteínas Proto-Oncogênicas c-ets/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética
4.
Macromol Biosci ; : e2300590, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38488862

RESUMO

Nanoparticle (NP)-based drug delivery systems are conceived to solve poor water-solubility and chemical/physical instability, and their purpose expanded to target specific sites for maximizing therapeutic effects and minimizing unwanted events of payloads. Targeted sites are also narrowed from organs/tissues and cells to cytosol/organelles. Beyond specific site targeting, the particular release of payloads at the target sites is growing in importance. This review overviews various issues and their general strategies during multiple steps, from the preparation of drug-loaded NPs to their drug release at the target cytosol/organelles. In particular, this review focuses on current strategies for "first" delivery and "later" release of drugs to the cytosol or organelles of interest using specific stimuli in the target sites. Recognizing or distinguishing the presence/absence of stimuli or their differences in concentration/level/activity in one place from those in another is applied to stimuli-triggered release via bond cleavage or nanostructural transition. In addition, future directions on understanding the intracellular balance of stimuli and their counter-stimuli are demonstrated to synergize the therapeutic effects of payloads released from stimuli-sensitive NPs.

5.
Exp Mol Med ; 56(3): 686-699, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38480902

RESUMO

Cancer cells often exhibit resistance to apoptotic cell death, but they may be vulnerable to other types of cell death. Elucidating additional mechanisms that govern cancer cell death is crucial for developing new therapies. Our research identified cyclic AMP-responsive element-binding protein 3 (CREB3) as a crucial regulator and initiator of a unique cell death mechanism known as karyoptosis. This process is characterized by nuclear shrinkage, deformation, and the loss of nuclear components following nuclear membrane rupture. We found that the N-terminal domain (aa 1-230) of full-length CREB3 (CREB3-FL), which is anchored to the nuclear inner membrane (INM), interacts with lamins and chromatin DNA. This interaction maintains a balance between the outward force exerted by tightly packed DNA and the inward constraining force, thereby preserving INM integrity. Under endoplasmic reticulum (ER) stress, aberrant cleavage of CREB3-FL at the INM leads to abnormal accumulation of the cleaved form of CREB3 (CREB3-CF). This accumulation disrupts the attachment of CREB3-FL to the INM, resulting in sudden rupture of the nuclear membrane and the onset of karyoptosis. Proteomic studies revealed that CREB3-CF overexpression induces a DNA damage response akin to that caused by UVB irradiation, which is associated with cellular senescence in cancer cells. These findings demonstrated that the dysregulation of CREB3-FL cleavage is a key factor in karyoptotic cell death. Consequently, these findings suggest new therapeutic strategies in cancer treatment that exploit the process of karyoptosis.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Membrana Nuclear , Proteômica , Apoptose , DNA , Membrana Nuclear/metabolismo , Humanos , Linhagem Celular Tumoral , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo
6.
Toxicol Res ; 40(1): 125-137, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38223669

RESUMO

Fargesin, a bioactive lignan derived from Flos Magnoliae, possesses anti-inflammatory, anti-oxidative, anti-melanogenic, and anti-apoptotic effects. This study compared the metabolic profiles of fargesin in human, dog, monkey, mouse, and rat hepatocytes using liquid chromatography-high resolution mass spectrometry. In addition, we investigated the human cytochrome P450 (CYP), UDP-glucuronosyltransferase (UGT), and sulfotransferase (SULT) enzymes responsible for fargesin metabolism. The hepatic extraction ratio of fargesin among the five species ranged from 0.59 to 0.78, suggesting that it undergoes a moderate-to-extensive degree of hepatic metabolism. During metabolism, fargesin generates three phase 1 metabolites, including fargesin catechol (M1) and O-desmethylfargesin (M2 and M3), and 11 phase 2 metabolites, including O-methyl-M1 (M4 and M5) via catechol O-methyltransferase (COMT), glucuronides of M1, M2, M4, and M5, and sulfates of M1-M5. The production of M1 from fargesin via O-demethylenation is catalyzed by CYP2C9, CYP3A4, CYP2C19, and CYP2C8 enzymes, whereas the formation of M2 and M3 (O-desmethylfargesin) is catalyzed by CYP2C9, CYP2B6, CYP2C19, CYP3A4, CYP1A2, and CYP2D6 enzymes. M4 is metabolized to M4 glucuronide by UGT1A3, UGT1A8, UGT1A10, UGT2B15, and UGT2B17 enzymes, whereas M4 sulfate is generated by multiple SULT enzymes. Fargesin is extensively metabolized in human hepatocytes by CYP, COMT, UGT, and SULT enzymes. These findings help to elucidate the pharmacokinetics and drug interactions of fargesin.

7.
Arch Pharm Res ; 47(2): 111-126, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38182943

RESUMO

Aschantin, a tetrahydrofurofuran lignan with a 1,3-benzodioxole group derived from Flos Magnoliae, exhibits antioxidant, anti-inflammatory, cytotoxic, and antimicrobial activities. This study compared the metabolic profiles of aschantin in human, dog, mouse, and rat hepatocytes using liquid chromatography-high-resolution mass spectrometry. The hepatic extraction ratio of aschantin among the four species was 0.46-0.77, suggesting that it undergoes a moderate-to-extensive degree of hepatic metabolism. Hepatocyte incubation of aschantin produced 4 phase 1 metabolites, including aschantin catechol (M1), O-desmethylaschantin (M2 and M3), and hydroxyaschantin (M4), and 14 phase 2 metabolites, including O-methyl-M1 (M5 and M6) via catechol O-methyltransferase (COMT), six glucuronides of M1, M2, M3, M5, and M6, and six sulfates of M1, M2, M3, M5, and M6. Enzyme kinetic studies using aschantin revealed that the production of M1, a major metabolite, via O-demethylenation is catalyzed by cytochrome 2C8 (CYP2C8), CYP2C9, CYP2C19, CYP3A4, and CYP3A5 enzymes; the formation of M2 (O-desmethylaschantin) is catalyzed by CYP2C9 and CYP2C19; and the formation of M4 is catalyzed by CYP3A4 enzyme. Two glutathione (GSH) conjugates of M1 were identified after incubation of aschantin with human and animal liver microsomes in the presence of nicotinamide adenine dinucleotide phosphate and GSH, but they were not detected in the hepatocytes of all species. In conclusion, aschantin is extensively metabolized, producing 18 metabolites in human and animal hepatocytes catalyzed by CYP, COMT, UDP-glucuronosyltransferase, and sulfotransferase. These results can help in clarifying the involvement of metabolizing enzymes in the pharmacokinetics and drug interactions of aschantin and in elucidating GSH conjugation associated with the reactive intermediate formed from M1 (aschantin catechol).


Assuntos
Benzodioxóis , Citocromo P-450 CYP3A , Lignanas , Humanos , Ratos , Camundongos , Animais , Cães , Citocromo P-450 CYP3A/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Citocromo P-450 CYP2C19/metabolismo , Cinética , Citocromo P-450 CYP2C9/metabolismo , Hepatócitos/metabolismo , Microssomos Hepáticos/metabolismo , Catecóis
8.
Chem Biol Interact ; 386: 110778, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37879594

RESUMO

The misuse of poisonous mushrooms containing amatoxins causes acute liver failure (ALF) in patients and is a cause of significant mortality. Although the toxic mechanisms of α-amanitin (α-AMA) and its interactions with RNA polymerase II (RNAP II) have been studied, α-AMA effector proteins that can interact with α-AMA in hepatocytes have not been systematically studied. Limited proteolysis-coupled mass spectrometry (LiP-MS) is an advanced technology that can quickly identify protein-ligand interactions based on global comparative proteomics. This study identified the α-AMA effector proteins found in human hepatocytes, following the detection of conformotypic peptides using LiP-MS coupled with tandem mass tag (TMT) technology. Proteins that are classified into protein processing in the endoplasmic reticulum and the ribosome during the KEGG pathway can be identified through affinity evaluation, according to α-AMA concentration-dependent LiP-MS and LiP-MS in hepatocytes derived from humans and mice, respectively. The possibility of interaction between α-AMA and proteins containing conformotypic peptides was evaluated through molecular docking studies. The results of this study suggest a novel path for α-AMA to induce hepatotoxicity through interactions with various proteins involved in protein synthesis, as well as with RNAP II.


Assuntos
Alfa-Amanitina , Hepatócitos , Humanos , Camundongos , Animais , Alfa-Amanitina/metabolismo , Alfa-Amanitina/toxicidade , Proteólise , Simulação de Acoplamento Molecular , Hepatócitos/metabolismo , Espectrometria de Massas
9.
Food Chem Toxicol ; 179: 113994, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37598851

RESUMO

Phalloidin, a bicyclic heptapeptide found in Amanita mushroom, specifically binds to F-actin in the liver causing cholestatic hepatotoxicity. However, the toxicokinetics and tissue distribution properties of phalloidin as well as their underlying mechanisms have to be studied further. The area under the plasma concentration curve (AUC) of phalloidin increased in proportion to the doses (0.2, 0.4, and 0.8 mg/kg for intravenous injection and 2, 5, and 10 mg/kg for oral administration). Phalloidin exhibited dose-independent low volume of distribution (395.6-456.9 mL/kg) and clearance (21.4-25.5 mL/min/kg) and low oral bioavailability (2.4%-3.3%). This could be supported with its low absorptive permeability (0.23 ± 0.05 × 10-6 cm/s) in Caco-2 cells. The tissue-to-plasma AUC ratios of intravenously injected and orally administered phalloidin were the highest in the liver and intestines, respectively, and also high in the kidneys, suggesting that the liver, kidneys, and intestines could be susceptible to phalloidin exposure and that active transport via the hepatic and renal organic anion transporters (OATP1B1, OATP1B3, and OAT3) may contribute to the higher distribution of phalloidin in the liver and kidneys.


Assuntos
Amanita , Animais , Camundongos , Humanos , Toxicocinética , Células CACO-2 , Faloidina , Distribuição Tecidual
10.
Arch Pharm Res ; 46(6): 500-534, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37354378

RESUMO

Cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) synthase (cGAS) is a DNA sensor that elicits a robust type I interferon response by recognizing ubiquitous danger-associated molecules. The cGAS/stimulator of interferon genes (cGAS/STING) is activated by endogenous DNA, including DNA released from mitochondria and extranuclear chromatin, as well as exogenous DNA derived from pathogenic microorganisms. cGAS/STING is positioned as a key axis of autoimmunity, the inflammatory response, and cancer progression, suggesting that the cGAS/STING signaling pathway represents an efficient therapeutic target. Based on the accumulated evidence, we present insights into the prevention and treatment of cGAS/STING-related chronic immune and inflammatory diseases. This review presents the current state of clinical and nonclinical development of modulators targeting cGAS/STING, providing useful information on the design of therapeutic strategies.


Assuntos
Interferon Tipo I , Neoplasias , Humanos , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , DNA , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Transdução de Sinais/fisiologia , Neoplasias/tratamento farmacológico , Neoplasias/genética , Imunidade Inata
11.
Toxicol Res ; 39(2): 251-262, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37008699

RESUMO

In the human body, proteins secreted into peripheral blood vessels are known as the secretome, and they represent the physiological or pathological status of cells. The unique response of cells to toxin exposure can be confirmed via secretome analysis, which can be used to discover toxic mechanisms or exposure markers. Alpha-amanitin (α-AMA) is the most widely studied amatoxin and inhibits transcription and protein synthesis by directly interacting with RNA polymerase II. However, secretory proteins released during hepatic failure caused by α-AMA have not been fully characterized. In this study, we analyzed the secretome of α-AMA-treated Huh-7 cells and mice using a comparative proteomics technique. Overall, 1440 and 208 proteins were quantified in cell media and mouse serum, respectively. Based on the bioinformatics results for the commonly downregulated proteins in cell media and mouse serum, we identified complement component 3 (C3) as a marker for α-AMA-induced hepatotoxicity. Through western blot in cell secretome and C3 ELISA assays in mouse serum, we validated α-AMA-induced downregulation of C3. In conclusion, using comparative proteomics and molecular biology techniques, we found that α-AMA-induced hepatotoxicity reduced C3 levels in the secretome. We expect that this study will aid in identifying new toxic mechanisms, therapeutic targets, and exposure markers of α-AMA-induced hepatotoxicity. Supplementary Information: The online version contains supplementary material available at 10.1007/s43188-022-00163-z.

12.
Biomed Pharmacother ; 162: 114558, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36966666

RESUMO

Regnase-1 is an endoribonuclease that regulates the stability of target genes. Here, we investigated whether Regnase-1 plays a regulatory role in the pathophysiology of atopic dermatitis, a chronic inflammatory skin disease. Regnase-1 levels were decreased in skin and serum of atopic dermatitis patients and mice. Regnase-1+/- mice exhibited more severe atopic dermatitis symptoms than wild-type mice in a house dust mite allergen-induced atopic dermatitis model. Regnase-1 deficiency led to the global changes in gene expression related with innate immune and inflammatory responses, in particular chemokines. The skin Regnase-1 level had an inverse relationship with chemokine expression when we analyzed samples of atopic dermatitis patients and Regnase-1-deficient mice, suggesting that potentiated chemokine production contributes to the augmented inflammation at lesion sites. Subcutaneous administration of recombinant Regnase-1 to mice significantly ameliorated atopic dermatitis-like skin inflammation with reduced chemokine production in a house dust mite-induced atopic dermatitis NC/Nga mouse model. These results indicate that Regnase-1 plays an essential role in maintaining skin immune homeostasis as a regulator of chemokine expression. Modulating Regnase-1 activity may be an efficient therapeutic strategy for treating chronic inflammatory diseases, including atopic dermatitis.


Assuntos
Dermatite Atópica , Animais , Camundongos , Quimiocinas , Dermatite Atópica/tratamento farmacológico , Modelos Animais de Doenças , Imunoglobulina E , Inflamação/patologia , Pele/metabolismo
13.
Arch Pharm Res ; 46(1): 44-58, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36607545

RESUMO

E2F 1, 2, and 3a, (refer to as E2Fs) are a subfamily of E2F transcription factor family that play essential roles in cell-cycle progression, DNA replication, DNA repair, apoptosis, and differentiation. Although the transcriptional regulation of E2Fs has focused on pocket protein retinoblastoma protein complex, recent studies indicate that post-translational modification and stability regulation of E2Fs play key roles in diverse cellular processes. In this study, we found that FBXO1, a component of S-phase kinase-associated protein 1 (SKP1)-cullin 1-F-box protein (SCF) complex, is an E2Fs binding partner. Furthermore, FBXO1 to E2Fs binding induced K48 ubiquitination and subsequent proteasomal degradation of E2Fs. Binding domain analysis indicated that the Arg (R)/Ile (I) and R/Val (V) motifs, which are located in the dimerization domain of E2Fs, of E2F 1 and 3a and E2F2, respectively, acted as degron motifs (DMs) for FBXO1. Notably, RI/AA or RV/AA mutation in the DMs reduced FBXO1-mediated ubiquitination and prolonged the half-lives of E2Fs. Importantly, the stabilities of E2Fs were affected by phosphorylation of threonine residues located near RI and RV residues of DMs. Phosphorylation prediction database analysis and specific inhibitor analysis revealed that MEK/ERK signaling molecules play key roles in FBXO1/E2Fs' interaction and modulate E2F protein turnover. Moreover, both elevated E2Fs protein levels by knockdown of FBXO1 and decreased E2Fs protein levels by sh-E2F3a delayed G1/S cell cycle transition, resulting in inhibition of cancer cell proliferation. These results demonstrated that FBXO1-E2Fs axis-mediated precise E2Fs stability regulation plays a key role in cell proliferation via G1/S cell cycle transition.


Assuntos
Quinases de Proteína Quinase Ativadas por Mitógeno , Neoplasias , Fatores de Transcrição E2F/metabolismo , Ciclo Celular , Proliferação de Células , Proteínas de Ciclo Celular
14.
Biomol Ther (Seoul) ; 31(1): 40-47, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36111592

RESUMO

Activation of the NLRP3 inflammasome is a necessary process to induce fibrosis in nonalcoholic fatty liver disease (NAFLD). Nonalcoholic steatohepatitis (NASH) is a kind of NAFLD that encompasses the spectrum of liver disease. It is characterized by inflammation and ballooning of hepatocytes during steatosis. We tested whether inhibiting the NLRP3 inflammasome could prevent the development and pathology of NASH. We identified loganin as an inhibitor of the NLRP3 inflammasome and investigated whether in vivo administration of loganin prevented NASH symptoms using a methionine-choline deficient (MCD) diet model in mice. We found that loganin inhibited the NLRP3 inflammasome activation triggered by ATP or nigericin, as shown by suppression of the production of interleukin (IL)-1ß and caspase-1 (p10) in mouse primary macrophages. The speck formation of apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) was blocked by loganin, showing that the assembly of the NLRP3 inflammasome complex was impaired by loganin. Administration of loganin reduced the clinical signs of NASH in mice fed the MCD diet, including hepatic inflammation, fat accumulation, and fibrosis. In addition, loganin reduced the expression of NLRP3 inflammasome components in the liver. Our findings indicate that loganin alleviates the inflammatory symptoms associated with NASH, presumably by inhibiting NLRP3 inflammasome activation. In summary, these findings imply that loganin may be a novel nutritional and therapeutic treatment for NASH-related inflammation.

15.
Front Mol Biosci ; 9: 1027917, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36387275

RESUMO

The inflammasome is a molecular platform that is created in the cytosolic compartment to mediate the host immunological response to cellular injury and infection. Caspase-1 may be activated by the inflammasome, which leads to the generation of the inflammatory cytokines interleukin-1ß (IL-1ß) and IL-18 and the beginning of pyroptosis, which is a type of proinflammatory cell death. Scientists have identified a number of different inflammasomes in the last 2 decades. The NLRP3 inflammasome has been studied the most, and its activity may be triggered by a broad range of different inducers. However, activation of the NLRP3 inflammasome in a manner that is not properly controlled is also a factor in the etiology of many human illnesses. Accumulating evidence indicates that the NLRP3 inflammasome plays a significant role in the innate and adaptive immune systems and the development of various arthritic illnesses, such as rheumatoid arthritis, ankylosing spondylitis, and gout. The present review provides a concise summary of the biological properties of the NLRP3 inflammasome and presents the fundamental processes behind its activation and control. We discuss the role of the inflammasome in the pathogenesis of arthritic diseases, such as rheumatoid arthritis, ankylosing spondylitis, and gout, and the potential of newly developed therapies that specifically target the inflammasome or its products for the treatment of inflammatory diseases, with a particular emphasis on treatment and clinical application.

16.
Chemosphere ; 309(Pt 1): 136725, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36208804

RESUMO

Simultaneous multiresidual pesticide analysis of saliva samples was performed using scaled-down QuEChERS extraction with LC-MS/MS and GC-MS/MS. The optimum extraction procedure using acidified acetonitrile was applicable to 336 pesticides (287 for LC-MS/MS and 49 for GC-MS/MS). To determine pesticide multiresidues in saliva, 100 µL of the sample was extracted with 200 µL of 0.1% formic acid in acetonitrile, and the initial extract was partitioned with 40 mg of MgSO4 and 10 mg of NaCl. The organic supernatants (120 µL) were then mixed with acetonitrile (30 µL) for matrix-matching (4:1, v/v), and the final extract solution was injected into the LC-MS/MS (4 µL) and GC-MS/MS (2 µL) systems. The established analytical method showed a good LOQs between 5 and 25 ng/mL with reliable accuracy/precision values and recovery results (50-140%) for the target pesticides. Under the two different storage conditions, most of the analytes did not undergo chemical changes in the saliva samples, whereas some pesticides were more stable in freeze-thaw processes than those left at room temperature. Biomonitoring of farmers (ten mixers and ten sprayers) was successfully applied using the validated method, and two carbamates (fenobucarb and propamocarb) were determined at trace concentrations (12.5-675.0 ng/mL from 11 positively detected samples).


Assuntos
Resíduos de Praguicidas , Praguicidas , Humanos , Praguicidas/análise , Cromatografia Líquida , Espectrometria de Massas em Tandem/métodos , Resíduos de Praguicidas/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Monitoramento Biológico , Fazendeiros , Saliva/química , Cloreto de Sódio/análise , Acetonitrilas/análise , Carbamatos/análise , Extratos Vegetais/análise
17.
Int J Mol Sci ; 23(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36293151

RESUMO

The well-known hepatotoxicity mechanism resulting from alpha-amanitin (α-AMA) exposure arises from RNA polymerase II (RNAP II) inhibition. RNAP Ⅱ inhibition occurs through the dysregulation of mRNA synthesis. However, the signaling pathways in hepatocytes that arise from α-AMA have not yet been fully elucidated. Here, we identified that the RAS/RAF/ERK signaling pathway was activated through quantitative phosphoproteomic and molecular biological analyses in Huh-7 cells. Bioinformatics analysis showed that α-AMA exposure increased protein phosphorylation in a time-dependent α-AMA exposure. In addition, phosphorylation increased not only the components of the ERK signaling pathway but also U2AF65 and SPF45, known splicing factors. Therefore, we propose a novel mechanism of α-AMA as follows. The RAS/RAF/ERK signaling pathway involved in aberrant splicing events is activated by α-AMA exposure followed by aberrant splicing events leading to cell death in Huh-7 cells.


Assuntos
Alfa-Amanitina , RNA Polimerase II , Alfa-Amanitina/farmacologia , Sistema de Sinalização das MAP Quinases/fisiologia , Fosforilação , Fatores de Processamento de RNA , RNA Mensageiro
18.
Front Pharmacol ; 13: 853971, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35496306

RESUMO

Gamma-hydroxybutyric acid (GHB), used as a therapeutic and an illegal anesthetic, is a human neurotransmitter produced during gamma-aminobutyric acid (GABA) biosynthesis and metabolism. Potential biomarker metabolites of GHB intoxication have been identified previously; however, reference concentrations have not been set due to the lack of clinical study data. Urinary profiling of endogenous GHB and its biomarker metabolites in urine samples (n = 472) of 206 healthy females was performed based on differences in age and time of sample collection using liquid chromatography-tandem mass spectrometry following validation studies. The unadjusted and creatinine-adjusted urinary concentrations ranges were obtained after urinary profiling. The creatinine-adjusted concentrations of glutamic and succinic acids and succinylcarnitine significantly increased, whereas that of glycolic acid significantly decreased with advancing age. Significant inter-day variation of GABA concentration and intra-day variation of 3,4-dihydroxybutyric acid and succinylcarnitine concentrations were observed. The urinary concentrations of 2,4-dihydroxybutyric acid, succinic acid, and 3,4-dihydroxybutyric acid showed the highest correlation with that of GHB. Data from this study suggest population reference limits to facilitate clinical and forensic decisions related to GHB intoxication and could be useful for identification of biomarkers following comparison with urinary profiles of GHB-administered populations.

19.
Pharmaceutics ; 14(4)2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35456608

RESUMO

The toxicokinetics of ß-amanitin, a toxic bicyclic octapeptide present abundantly in Amanitaceae mushrooms, was evaluated in mice after intravenous (iv) and oral administration. The area under plasma concentration curves (AUC) following iv injection increased in proportion to doses of 0.2, 0.4, and 0.8 mg/kg. ß-amanitin disappeared rapidly from plasma with a half-life of 18.3−33.6 min, and 52.3% of the iv dose was recovered as a parent form. After oral administration, the AUC again increased in proportion with doses of 2, 5, and 10 mg/kg. Absolute bioavailability was 7.3−9.4%, which resulted in 72.4% of fecal recovery from orally administered ß-amanitin. Tissue-to-plasma AUC ratios of orally administered ß-amanitin were the highest in the intestine and stomach. It also readily distributed to kidney > spleen > lung > liver ≈ heart. Distribution to intestines, kidneys, and the liver is in agreement with previously reported target organs after acute amatoxin poisoning. In addition, ß-amanitin weakly or negligibly inhibited major cytochrome P450 and 5'-diphospho-glucuronosyltransferase activities in human liver microsomes and suppressed drug transport functions in mammalian cells that overexpress transporters, suggesting the remote drug interaction potentials caused by ß-amanitin exposure.

20.
Anal Chim Acta ; 1194: 339401, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35063156

RESUMO

The accurate, precise, and robust quantification of endogenous biomarkers is a challenging task because of the presence of significantly low levels of endogenous compounds in biological samples, the absence of analyte-free matrix-matched calibrators, and sample instability due to in-vitro production or degradation of the analytes. Gamma-hydroxybutyric acid (GHB), a compound often used in drug-facilitated crimes, is a human neurotransmitter produced during both the biosynthesis and metabolism of gamma-aminobutyric acid (GABA). Evidently, proving GHB intoxication through the quantification of GHB and its metabolites in biological samples is not straightforward. This study aimed to develop a sensitive and accurate quantitative method for the simultaneous determination of endogenous GHB and its metabolic precursors and products (glutamic acid, GABA, succinic acid, 2,4-dihydroxybutyric acid, 3,4-dihydroxybutyric acid, glycolic acid, and succinylcarnitine) in human urine using LC-MS/MS. For this purpose, chemical derivatization with benzoyl chloride was employed to improve the sensitivity to glutamic acid and GABA. Synthetic urine was used to prepare calibrators, and the validity of this approach was fully demonstrated, particularly focusing on the instability issues. The validation results proved the method to be selective, sensitive, accurate, and precise, with acceptable linearity within calibration ranges. Moreover, our results regarding the in-vitro production or degradation of metabolites highlight the effects of handling and storage conditions of urine samples. Finally, this effective analytical method is expected to be useful in studying the relationship between GHB intoxication and metabolic alterations and, thus, discovering practical biomarkers for GHB ingestion.


Assuntos
Hidroxibutiratos , Espectrometria de Massas em Tandem , Calibragem , Cromatografia Líquida , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA